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Abstract—In electromechanics of particles, the effective mo-
ment method relies on the knowledge of the induced multipole
moments. A general multipole theory is available in the literature,
however, only linear multipole model is usually exploited when
determining numerically these effective moments. Since this axial
model do not apply to all electrostatic applied field, we examine
a more general multipole model.

I. INTRODUCTION

When a dielectric particle is subjected to an electrostatic
field, interfacial polarization mechanisms cause a charge ac-
cumulation on the surface between the particle and the medium
in which it is suspended. This polarization creates forces and
torques that are exploited in dielectrophoretic phenomena used
for the characterization and the manipulation of biological
particles [1]. In the effective moment method the particle under
consideration is substituted by a set of multipoles (dipole,
quadrupole, octupole,...) producing the same field distortion
caused by the presence of the particle. In the conventional
dielectrophoresis theory, it is usually assumed that only a
dipole is induced [2]. Although this approximation seems to be
adequate in many circumstances, exceptions exist and higher-
order multipole corrections are required to predict the particle
behavior [3]. In particular, non-spherical particles can have
significant higher-order components, and in some cases these
higher-order terms strongly influence the observable motions
in the dielectrophoresis and electrorotation phenomena.

Fig. 1. Example of a 3D system of electrodes and a particle.

Green and Jones proposed to consider linear multipoles to
determine the dipole moment and higher-order moments [4]
(see also subsection II.B). This axial multipole model cannot
be used if the external field is not aligned with the revolution
symmetry axis. It is unfortunately the most frequent situation
in biological dielectrophoretic applications. For instance, in

cylindrically symmetric systems, the radial component of the
field is usually higher than the z-component (Fig. 1). Here,
we study a more general multipole model to identify the
equivalent model of the polarized particle.

In the following, the multipole expansion is first introduced
and numerical results are proposed to show the relevance of
the proposed approach.

II. MODEL AND METHOD

A. Induced potential

The particle and the surrounding medium are considered
to be linear media. The electrostatic potential is obtained by
solving Poisson’s equation without free charge in the system.

The total potential Utotal outside the particle is the sum of
both applied potential Uext and induced potential Uind caused
by the polarization of the particle, i.e.

Utotal = Uext + Uind

=
∑
n,m

An,mr
nYm

n (θ, ϕ) +
∑
n,m

Bn,m

rn+1
Ym
n (θ, ϕ), (1)

where Ym
n are the complex spherical harmonics, with θ and ϕ

the angles of the spherical coordinate system. The magnitudes
An,m and Bn,m can be determined numerically or analytically
using proper boundary conditions.

The multipole polarization coefficients pmn are related to
Bn,m by [5]

pmn =

√
2n+ 1

4π
Nm

n Bn,m, with Nm
n =

√
2n+ 1

4π

(n−m)!

(n+m)!
.

(2)
For a spherical particle with radius a and permittivity εp

suspended in a medium with permittivity εm, the Bn,m can
be expressed in terms of the Am,n [1]:

Bn,m =
Kn

(2n+ 1)
a2n+1An,m, (3)

where

Kn =
n(2n+ 1)(εm − εp)
(n+ 1)εp + nεm

, (4)

is the generalized Clausius-Mossotti factor.
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B. Calculation of the effective multipole moments

Using the orthogonality property of the spherical harmonics
the individual moments are determined according to:

pmn =

√
2n+ 1

4π
Nm

n Rn+1

∫
S
Ym
n (θ, ϕ) Uind(R, θ, ϕ)ds, (5)

where S is a spherical surface centered on the particle with
a radius R larger than the largest dimension of the particle.
The linear multipoles correspond to the case m = 0 in the
expression (5).

C. Solution of the problem

The particle of interest in our problem is cylindrically
symmetric, immersed in a containing medium with permit-
tivity εm. The particle is assumed to be sufficiently small
to consider the external electric field constant in its closed
region. Consequently, the 3D problem is transformed into
two axisymmetric problems, as shown in fig.2. The electric

Fig. 2. Boundary conditions for the radial and z-axis potential calculations.

potential in the whole space is obtained using both solutions:

U(r, z, θ) = Uz + Ur cos(ϕ). (6)

Two linear problems for Uz and Ur are then required to be
solved:∫

Ω

r

(
∂Ur

∂r

∂v

∂r
+
∂Ur

∂z

∂v

∂z

)
drdz +

∫
Ω

Ur

r
vdrdz = 0, (7)

and ∫
Ω

r

(
∂Uz

∂r

∂v

∂r
+
∂Uz

∂z

∂v

∂z

)
drdz = 0. (8)

III. NUMERICAL RESULTS

Fig. 3. Details of the solutions Uz (left) and Ur (right). The white line is
the boundary of the particle. εp/εm = 104.

The numerical solution of problems (7) and (8) is performed
by using the finite element method and the implementation is
based on the getfem++ finite element library [6] (see Fig. 3).
Fig. 4 and Fig. 5 show the example of the numerical results
for a spheroidal shaped (prolate) particle with an eccentricity
(ratio) of 2:1.

Fig. 4. Polarization coefficients following the radial axis.

Fig. 5. Polarization coefficients following the z-axis.

This numerical results obtained for the coefficients of po-
larization, following the z-direction and following the radial
direction, show a dominant dipole component with slightly
higher values for the radial direction. Accordingly, the effect of
this radial polarization has to be taken into consideration in the
effective multipole expansion for a more accurate description
of the particle behavior.
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